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Analyzing the cost of 

securing control systems*



DEPT NAME

This article describes our recent progress on the 
development of rigorous analytical metrics for assessing the 

threat-performance trade-o� in control systems. Computing 
systems that monitor and control physical processes are now 

pervasive, yet their security is frequently an afterthought rather 
than a �rst-order design consideration. We investigate a rational basis 

for deciding—at the design level—how much investment should be 
made to secure the system.
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Analyzing the cost of securing control systems

T
he level of investment to secure a control 
system typically depends on the particulars 
of the threats facing the system, as well as the 

perceived cost of a successful attack. �reat models 
are organized in terms of the attacker’s skill, access, 
and available level of e�ort; the cost can be measured 
in terms of outage duration, number of users denied 
service, revenue lost, etc. 

A few recent studies approach this problem as a 
game between the attacker and the defender in which 
the equilibrium point can inform the optimal invest-
ment in cybersecurity [1]. 

A more general approach takes the attacker out 
of the equation and looks at designs that are secure 
with provably low information leakage. Such systems 
are by design guaranteed not to leak any signi�cant 
information to any external entity—be it an attacker 
or an ordinary bystander. By measuring the level of 
information leakage (e.g., how probable it is that an 
observer can correctly guess the private preferences of 
the users from observations), we can study the trade-
o� between the degree of leakage permitted and its 
cost on overall system performance. 

Distributed control with 

information sharing 

We study this trade-o� in a class of distributed con-
trol systems [2]. As one example, consider vehicles 
equipped with smart navigation devices that could 
share crowdsourced location and destination informa-
tion to estimate tra�c conditions more accurately [3]. 
Each vehicle’s navigation device could then use ag-
gregates of these estimates to select routes in light of 
current tra�c conditions. 

Design scenarios

Multiple design possibilities or scenarios exist along 
the information-sharing continuum. At one extreme 
is absolute security, in which the vehicles’ navigation 
devices never explicitly exchange information with 
each other. �is architecture is absolutely secure as 
far as the communication channel goes; however, the 
vehicles miss out on the potential bene�t of lowering 
their travel times using collaborative tra�c estimation. 

At the other extreme, the navigation devices com-
municate freely and share complete information. �is 

allows all of the devices to make accurate tra�c pre-
dictions and optimal route choices but also increases 
the risk by making the devices vulnerable to a panoply 
of attacks that exploit the communication channels—
distributed denial-of-service attacks, spoo�ng, viola-
tion of location privacy, etc. 

Between these extremes lies a multitude of design pos-
sibilities that trade o� security and performance di�er-
ently. Similar trade-o�s arise in other systems where 
users could sacri�ce performance to achieve better 
security. In the power industry, for example, entities 
with di�erent demand/consumption patterns could 
share (or not share) information in support of better 
demand estimates and better consumption scheduling. 

General framework

We present a general framework in which we model 
the tra�c navigation scenario as:
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where u
i
 is the ith agent’s decision or control input at 

time t; this is computed as a function of its preference 
p

i
 (say, destination), current state x

i
t  (position) 

and an estimate of the environment t  (tra�c). 
�is decision (u

i
) and the actual environment state de-

termines its state in the next time step x
i

t . �e state 
that the ith agent shares with the others is 

i
t —this 

could be the exact value x
i

t  for the complete sharing 
strategy r

cs
, or some randomized noisy version of it to 

give better privacy and/or security. 

Finally, z t  and t  are respectively the actual and 
estimated environment states computed as an aggre-
gation h  of the actual and shared agent states. �e 
cost of a particular communication strategy cost r  is 
de�ned, for example, by summing up the distance to 
destination x

i
t

i
t  of all agents. �en the cost 

of privacy is cost r r
cs

, the cost of r rela-
tive to the cost of the complete information sharing 
strategy r

cs
. 

In [2], we speci�cally studied communication strat-
egies that maintain di�erential privacy as introduced 
by Dwork et al. [4, 5]. In this case, we are concerned 
with privacy of the continuous sequence of locations 
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FIGURE 1. In this linear case, as the number of participants 
increases, the cost of privacy decreases. 

of the vehicles. We de�ne a pair of agent preference 
sets p and pʹ to be adjacent up to time T provided they 
di�er about the preference of at most one agent, say 
agent i  and that di�erence p

i
ʹ
i
 in the ith agent’s 

preferences is bounded. 

With this notion of adjacency, we say that a com-
munication strategy maintains ε di�erential privacy 
(for small ε) under the following condition: the ratio 
of the probability that the communications came from 
a system with p to the probability that the communi-
cation came from system with preference vector p

i
 is 

at most eε. �at is, even an adversary with full access 
to all the communication in the system (the sequences 

i
(t)) can gain additional information about the 

preferences of an individual agent i with only negli-
gible probability eε . �us, the adversary is not 
able to make a high-con�dence inference about any 
individual’s preferences.

Cost of privacy 

Adapting the mechanisms in di�erential privacy litera-
ture to this setting, we �rst present a general commu-
nication mechanism for achieving ε-di�erential priva-
cy in distributed control systems. In this mechanism, 
each of the conveyed states is the actual state masked 
by a noise term that is chosen from a Laplacian 
distribution [p(x) = 1/2b e-|x|/b

,
 where the parameter b 

de�nes the variance of the distribution]. Speci�cally, 
in our mechanism, the parameter b is chosen as a 
function of ε as well as the stability of the system. 

With this design, we can precisely and mathemati-
cally characterize the trade-o� between the level of 
security and privacy achieved and its cost. Speci�cally:

 We show that for a linear distributed system with 
quadratic cost functions, the standard devia-
tion of the noise needed to make the system 
-di�erentially private is independent of the size 

of the agent population. �is is because increas-
ing population has two opposing e�ects. On one 
hand, a larger number of agents are in�uenced 
by the changes in the preference of an individual 
agent i. On the other hand, the fractional in�u-
ence of i on another individual agent through 
the environment weakens. In the linear case, 
these two e�ects roughly cancel each other. Since 
the means of Laplacian noise terms are zero, as 
the number of agents increases, the aggregate of 
noise terms converges to zero (see �gure 1).

 We also show that the required standard de-
viation of noise decreases with the stability 
of the dynamics and with the weakening of 
the environment’s in�uence on an individual. 
Speci�cally, when the modulus of the maximum 
eigenvalue of the dynamics matrix is smaller, the 
e�ect of changes in an individual’s preference on 
the system’s trajectory decays faster over time. 
Consequently, for stable dynamics, if we �xed the 
total number of observations as the time horizon 
goes to in�nity, the amount of noise required 
to achieve di�erential privacy becomes inde-
pendent of the time horizon. For the unstable 
dynamics case, on the other hand, the amount of 
randomization needed can grow exponentially 
with the time horizon. 

Optimality of mechanisms 

Adding the right amount of noise from the right dis-
tribution (Laplacian, in this case) gives ε-di�erential 
privacy, and we can explicitly analyze the cost in-
curred. However, is this the most e�cient (i.e., inex-
pensive) strategy for achieving ε-di�erential privacy of 
control systems? 

In [6], we answer this question by showing that 
indeed this Laplacian noise is the optimal choice for 
a subclass of the above control problem; namely, the 
class in which an individual agent aims to privately 
broadcast its states while minimizing the amount 
of noise added. �e amount of noise is measured 
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by entropy in [6], and we can further show that the 
Laplacian noise is also the best choice to minimize 
a quadratic cost function of the agent at the same 
time. We show that, owing to the system’s closed-loop 
nature, protecting the whole trajectory is equivalent to 
protecting the agent’s preferences. 

�erefore, the adversary is modeled by a �lter esti-
mating the system’s initial state based on the system’s 
randomized trajectory. We prove that if the system 
is ε-di�erentially private to the adversary, then the 
entropy of the adversary’s estimation has to be at least 
greater than a certain optimal value achieved via the 
Laplacian mechanism. 

Trade-o�s in optimizing over a network 

Another application of our framework is in under-
standing similar trade-o�s in the context of distribut-
ed optimization problems [7]. Consider a scenario in 
which a collection of agents needs to select a common 
meeting point while minimizing the sum of the agents’ 
individual travel costs. Each agent may have a di�er-
ent cost function and want to keep this cost function 
private (as cost functions can reveal an agent’s priori-
ties about time, distance, etc.). 

In [7], we present mechanisms for solving such op-
timization problems while guaranteeing ε-di�erential 
privacy of the cost functions. Our mechanism relies 
on all agents communicating noisy versions of their 
current guess about the meeting point, computing the 
average of these noisy guesses, and moving their guess 
towards a point that reduces their individual costs. 
�e noise added to these guesses has to decay over the 
successive rounds. 

With higher levels of privacy, shared information 
has to be noisier and the meeting point is more likely 
to be away from the optimal. We show that the ex-
pected deviation of the private consensus point, hence 
the cost or inaccuracy of the solution, from the true 
optimal point is of the order of O 1 ε2  �is is shown 
in �gure 2.

Conclusions 

As a part of this project, we initiated the study of 
the trade-o�s between performance or optimality 
of control systems and the level of communication 
security and privacy for which they could be designed. 
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FIGURE 2. As levels of privacy decrease (i.e., higher ), the cost 
of privacy decreases. Each data point in this curve represents 
500 numerical simulations, and the shape of the curve matches 
our analytical results.

We adopted the well-established notion of di�erential 
privacy in several of our papers because it is quantita-
tive and could be extended naturally to continuously 
observed systems. 

One practical implication of our analysis is that 
the proposed iterative, noise-adding mechanisms 
are more likely to be useful for stable systems with 
short-lived participants (e.g., drivers with short com-
mutes). We also show that stable dynamics can work 
even with mechanisms independent of the number 
of participants. 

Since the publication of our �rst result [8], several 
other connections have been drawn between di�eren-
tial privacy and control [9], �ltering [10], and opti-
mization [11]. Exploration of other security metrics, 
the corresponding performance trade-o�s, optimality 
results, and their applications in realistic case studies 
all merit further attention—we believe that they will 
provide a scienti�c basis for security investments. 
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